136. The Structure of Geigerin: X-Ray Analysis of Bromogeigerin Acetate.

By (MISS) J. A. HAMILTON, A. T. MCPHAIL, and G. A. SIM.

In order to determine the stereochemistry of the sesquiterpenoid lactone geigerin an X-ray study of bromogeigerin acetate has been carried out. Bromogeigerin acetate crystallizes in the orthorhombic system, space group $P2_12_12_1-D_2^4$, with four molecules of $C_{17}H_{21}BrO_5$ in the unit cell. Successive three-dimensional Fourier syntheses resulted in the elucidation of the constitution and stereochemistry (apart from absolute configuration) as summarized in formula (I).

THE structure of the sesquiterpenoid lactone geigerin has been investigated by Barton and Levisalles¹ who established the constitution and proposed a partial stereochemistry. In order to confirm and extend the assignment we have carried out a crystal-structure analysis of a bromo-derivative of geigerin acetate which Barton and Pinhey² prepared by bromination of the acetate with N-bromosuccinimide in carbon tetrachloride. After a number of cycles of three-dimensional Fourier syntheses and least-squares refinement of positional and thermal atomic parameters our final results establish the constitution and relative stereochemistry of this derivative to be as in (I). The absolute configuration given in (I)

has been defined 2 by a chemical correlation with artemisin (II). Position 2 was the site at which bromination was expected to occur in geigerin acetate. That substitution actually takes place at position 1 has the unfortunate consequence that we cannot infer the configuration of geigerin at position 1 from our results.

The final electron-density distribution for bromogeigerin acetate is shown in Fig. 1 as superimposed contour sections parallel to (001) and covering the region of one molecule. The atomic arrangement corresponding to this electron-density distribution is illustrated in Fig. 2. The stereochemistry at positions 6, 7, and 8 is the same as that proposed by Barton and Levisalles.¹ The cycloheptane ring has a chair conformation.

The interatomic distances and interbond angles calculated from the final atomic co-ordinates (see Table 1) are listed in Table 2. The standard deviations of the final atomic co-ordinates were estimated in the usual manner from the least-squares residuals

^{*} Barton and Pinhey, Proc. Chem. Soc., 1960, 279.

¹ Barton and Levisalles, J., 1958, 4518.

TABLE 1.

Atomic co-ordinates.

(Origin of co-ordinates as in "International Tables." *)

Atom	x/a	y/b	z c	Atom	x/a	y b	z c	Aton	n <i>x/a</i>	y/b	z c
C(1)	0.4872	0.0270	0.7184	C(9)	0.3139	0.1670	0.6549	C(17)	0.1111	1 - 0.2225	0.6449
C(2)	0.6497	0.0768	0.7521	C(10)	0.3270	0.0855	0.7275	O(1)	0.9248	8 0.0396	0.7015
C(3)	0.7761	0.0384	0.6919	C(11)	0.4371	0.1211	0.4602	O(2)	0.2166	6 0.2117	0.5114
C(4)	0.6912	-0.0003	0.6112	C(12)	0.3236	0.2107	0.4526	O(3)	0.3318	8 0.2710	0.3928
C(5)	0.5324	-0.0008	0.6259	C(13)	0.4978	0·0759	0.3690	O(4)	0.2658	8 - 0.0830	0.5994
C(6)	0.4028	-0.0286	0.5596	C(14)	0.7864	-0.0322	0.5336	O(5)	0∙379 4	4 - 0.2248	0.5587
C(7)	0.3199	0.0541	0.5122	C(15)	0.3148	0.1397	0.8209	Br	0.464	6 - 0.0914	0.7919
C(8)	0.2282	0.1304	0.5715	C(16)	0.2631	-0.1804	0.5999				
* "	'Interna	ational Ta	bles for	X-Ray	Crystal	lography,"	The	Kynoch	Press,	Birmingham	ı, 1952,

Vol. I.

TABLE 2.

Interatomic distances (Å) and angles.

Intramolecular bonded distances

C(1) - C(2)	1.57	C(8)-C(9)	1.53	C(11) - C(12)	1.54	C(3) - O(1)	1.21
C(2) - C(3)	1.47	C(9) - C(10)	1.58	C(12) - O(2)	1.25	C(6)-O(4)	1.47
C(3) - C(4)	1.51	C(10) - C(1)	1.53	C(12) - O(3)	1.24	C(16) - O(5)	1.29
C(4) - C(5)	1.31	C(1) - C(5)	1.51	C(8) - O(2)	1.45	C(16) - O(4)	1.34
C(5) - C(6)	1.51	C(7) - C(11)	1.54	C(10)-C(15)	1.61	C(16) - C(17)	1.53
C(6) - C(7)	1.51	C(11) - C(13)	1.60	C(4) - C(14)	1.48	C(1) - Br	1.99
C(7) - C(8)	1.57			., .,		· · /	

Intramolecular non-bonded distances

$C(1) \cdot \cdot \cdot C(7)$	3.44	$C(4) \cdot \cdot \cdot C(11)$	3.51	$C(6) \cdots O(2)$	3.71	$C(10) \cdots O(2)$	3.83
$C(1) \cdots C(8)$	3 ∙38	$C(4) \cdots O(4)$	3.64	$C(6) \cdots O(5)$	2.71	$C(10) \cdots O(4)$	3.07
$C(1) \cdots C(14)$	3 ∙81	$C(5) \cdots C(8)$	3.17	$C(7) \cdots C(10)$	3.31	$C(11) \cdots C(14)$	3.71
$C(1) \cdots C(16)$	3 ∙84	$C(5) \cdot \cdot \cdot C(9)$	2.95	$C(7) \cdots C(14)$	3.98	$C(11) \cdots O(4)$	3.79
$C(1) \cdots O(1)$	3 ∙56	$C(5) \cdots C(11)$	3.13	$C(7) \cdots C(16)$	3.53	$C(13) \cdots O(2)$	3.66
$C(1) \cdots O(4)$	2.97	$C(5) \cdots C(15)$	3 ∙96	$C(7) \cdots O(3)$	3 ∙50	$C(13) \cdots O(3)$	3.03
$C(2) \cdots C(6)$	3 ∙84	$C(5) \cdots C(16)$	3.32	$C(7) \cdots O(5)$	3.93	$C(13) \cdots C(14)$	3.74
$C(2) \cdot \cdot \cdot C(9)$	3∙34	$C(5) \cdots O(1)$	3.43	$C(8) \cdots C(13)$	3 ∙86	$C(14) \cdots O(1)$	2.97
$C(2) \cdot \cdot \cdot C(14)$	3.82	$C(5) \cdot \cdot \cdot O(5)$	3 ∙48	$C(8) \cdot \cdot \cdot C(15)$	3 ∙87	$Br \cdot \cdot \cdot C(3)$	3.45
$C(2) \cdot \cdot \cdot C(15)$	3 ∙04	$C(6) \cdots C(9)$	3 ∙14	$C(8) \cdots O(3)$	3.45	$Br \cdots C(4)$	3.54
$C(3) \cdots C(6)$	3.75	$C(6) \cdot \cdot \cdot C(10)$	3 ∙06	$C(8) \cdots O(4)$	2.98	$\mathbf{Br} \cdots \mathbf{C}(6)$	3.68
$C(3) \cdot \cdot \cdot C(10)$	3.74	$C(6) \cdot \cdot \cdot C(12)$	3.73	$C(9) \cdots C(11)$	3 ∙19	$Br \cdots C(15)$	3.43
$C(4) \cdots C(7)$	3.45	$C(6) \cdots C(14)$	3 ·14	$C(9) \cdots C(12)$	3.14	$Br \cdots C(16)$	3.57
$C(4) \cdot \cdot \cdot C(9)$	3 ∙89	$C(6) \cdot \cdot \cdot C(13)$	3.33	$C(9) \cdots O(4)$	3.57	$Br \cdots O(4)$	3·3 5
$C(4) \cdot \cdot \cdot C(10)$	3.64	$C(6) \cdots C(17)$	3 ∙80				

Intermolecular distances ($\leqslant 4$ Å)

$C(3) \cdot \cdot \cdot O(3)_{I}$	2.96	$C(12) \cdot \cdot \cdot O(2)_{I}$	3.41	$Br \cdot \cdot \cdot C(12)_{III}$	3 ·76	$Br \cdots C(13)_{III}$	3.94
$O(1) \cdots O(3)_{I}$	3 ·07	$O(3) \cdots O(2)_I$	3.45	$Br \dots O(3)_{III}$	3 ·78	$C(12) \cdot \cdot \cdot C(8)_{I}$	3.96
$C(11) \cdots O(2)_I$	3.26	$O(3) \cdots C(8)_{I}$	3.53	$C(14) \cdot \cdot \cdot O(3)_{I}$	3 ·79	$C(15) \cdots C(13)_{TT}$	3.97
$C(4) \cdots O(3)_{I}$	3.36	$O(5) \cdots C(17)_{11}$	3 ·70	$C(17) \cdots O(3)_{TT}$	3 ∙86	$C(17) \cdots C(15)_{TV}$	3.98
$C(2) \cdots O(3)_{I}$	3 ∙38	$C(14) \cdots O(5)_{II}$	3 ·70	$C(13) \cdots O(2)_{I}$	3 ·88	$C(5)' \cdots O(3)_{I}'$	4 ⋅00
The subseries							

The subscripts refer to the following positions: $I = \frac{1}{2} + x, \frac{1}{2} - y, 1 - z.$

	3	T	х,	2 -	у,		_	4.	
II	ł	+	x,	-1	_	у,	1	—	z.

 $\begin{array}{llll} \text{III} & \frac{1}{2} - x, -y, \frac{1}{2} + z. \\ \text{IV} & -x, -\frac{1}{2} + y, 1\frac{1}{2} - z. \end{array}$

Interbond angles

C(1)	C(2)	C(3)	10 3°	C(5)	C(1)	Br	110°	C(6)	C(7)	C(8)	116°	C(12)	C(11)	C(7)	99°
C(2)	C(3)	C(4)	108	C(10)	C(1)	Br	108	C(7)	C(8)	C(9)	119	C(11)	C(7)	C(8)	101
C(3)	C(4)	C(5)	108	C(5)	C(6)	O(4)	112	C(8)	C(9)	C(10)	112	C(7)	C(11)	C(13)	114
C(4)	C(5)	C(1)	114	C(7)	C(6)	O(4)	104	C(9)	C(10)	C(1)	112	C(12)	C(11)	C(13)	115
C(5)	C(1)	C(2)	102	C(6)	O(4)	C(16)	122	C(10)	C(1)	C(5)	115	C(11)	C(12)	O(3)	124
C(2)	C(3)	O(1)	128	O(4)	C(16)	O(5)	117	C(9)	C(10)	C(15)	107	O(2)	C(12)	O(3)	124
C(4)	C(3)	O(1)	124	O(4)	C(16)	C(17)	113	C(1)	C(10)	C(15)	112	C(9)	C(8)	O(2)	107
C(3)	C(4)	C(14)	121	O(5)	C(16)	C(17)	129	C(7)	C(8)	O(2)	101	C(6)	C(7)	C(11)	115
C(5)	C(4)	C(14)	130	C(1)	C(5)	C(6)	121	C(8)	O(2)	C(12)	114	C(4)	C(5)	C(6)	125
C(2)	C(1)	Br	105	C(5)	C(6)	C(7)	116	O(2)	C(12)	C(11)	112	C(2)	C(1)	C(10)	117
													. ,	. ,	

.0

(see Experimental section) and are shown in Table 3; from the results the average e.s.d. of a carbon-carbon bond is about 0.03 Å and the average e.s.d. of a valency angle about 2° .

TABLE 3.

		Sta	ndard d	eviations	of the	final at	omic co-o	ordinates ((Å).		
Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
C(1)	0.024	0.018	0.019	C(9)	0.026	0.020	0.020	C(17)	0.026	0.020	0.022
C(2)	0.025	0.020	0.020	C(10)	0.023	0.019	0.017	O(1)	0.016	0.014	0.012
C(3)	0.024	0.017	0.019	C(11)	0.024	0.018	0.019	O(2)	0.016	0·013	0.013
C(4)	0.024	0.020	0.020	C(12)	0.026	0.020	0.020	O(3)	0.018	0.012	0.016
C(5)	0.025	0.017	0.017	C(13)	0.022	0.020	0.020	O(4)	0.016	0.013	0.014
C(6)	0.023	0.020	0.022	C(14)	0.027	0.022	0.021	O(5)	0.019	0.012	0.017
C(7)	0.025	0.020	0.020	C(15)	0.027	0.023	0.021	Br	0.003	0.002	0.002
C(8)	0.024	0.020	0.021	C(16)	0.024	0.019	0.021				

FIG. 1. Final three-dimensional electrondensity distribution for bromogeigerin acetate shown by means of superimposed contour sections parallel to (001). Contour interval le/Å³ except around the bromine atom where it is 5e/Å³.

The average carbon-carbon single bond length of 1.537 Å compares favourably with the value of 1.545 Å in diamond. The carbon-carbon double bond length of 1.31 Å in the cyclopentenone ring does not differ significantly from the values of 1.33 and 1.32 Å reported for ethylene and *p*-benzoquinone,³ respectively. The carbon-oxygen single bonds fall into two categories; those adjacent to a carbon-oxygen double bond have a mean length of 1.29 Å whereas those not adjacent to a carbon-oxygen double bond have a mean length of 1.46 Å. This difference is highly significant and indicates that in lactone and ester groupings, just as in carboxylic acids, the structure (III) makes an important contribution. The angles around carbon atoms 12 and 16, moreover, conform

* Trotter, Acta Cryst., 1960, 18, 86.

to the pattern observed in carboxylic acids,⁴ the angles C(17)C(16)O(4) and C(11)C(12)O(2) being approximately tetrahedral, whereas the angles C(17)C(16)O(5), O(4)C(16)O(5), C(11)C(12)O(3), and O(2)C(12)O(3) exceed 120°. Similar conclusions were reached in our recent analyses of epilimonol iodoacetate⁵ and clerodin bromolactone.⁶ Of the three carbonyl carbon-oxygen bonds, C(3) - O(1) is the shortest $(1 \cdot 22 \text{ Å})$. This is not unreasonable, for C(16)-O(5) and C(12)-O(3), unlike C(3)-O(1), are involved in resonance of the type shown in (III) and in consequence have some single-bond character associated with them. The carbon-bromine bond length of 1.99 Å appears to be slightly longer than the average value of 1.94 Å reported for various alkyl bromides.⁷ It is perhaps pertinent that the environment of the carbon-halogen bond is not unlike that in isoclovene hydrochloride where a significant lengthening of the carbon-chlorine bond over the accepted value has been attributed to a steric effect.⁸ In the cycloheptane ring the angles are consistently greater than tetrahedral, the mean value being 116°. Similar increases

FIG. 3. The arrangement of molecules in the crystal as viewed in projection along the a-axis.

in bond angles have been reported for isoclovene hydrochloride,⁸ cyclononylamine hydrobromide,⁹ and 1,6-trans-diaminocyclodecane dihydrochloride.¹⁰

The cyclopentenone system is non-planar. The mean plane through atoms C(1), C(3), C(4), C(5), C(6), and C(14) was calculated by the method of Schomaker et al.,¹¹ and the deviations of the atoms of the cyclopentenone system from this plane are listed in Table 4. The displacement, 0.32 Å, of C(2) is highly significant.

The arrangement of the molecules in the crystal as viewed in projection along the a-axis is shown in Fig. 3. The shorter intermolecular contacts are listed in Table 2; none appears to be abnormal.

⁴ Cochran, Acta Cryst., 1953, 6, 260; Ahmed and Cruickshank, *ibid.*, 1953, 6, 385; Broadley, Cruickshank, Morrison, Robertson, and Shearer, Proc. Roy. Soc., 1959, 251, A, 441; Ferguson and Sim, Acta Cryst., 1961, 14, 1262.

Arnott, Davie, Robertson, Sim, and Watson, J., 1961, 4183.

⁶ Paul, Sim, Hamor, and Robertson, unpublished work.

⁷ Sutton *et al.*, "Tables of Interatomic Distances and Configuration in Molecules and Ions," *Chem. Soc. Special Publ.* No. 11, 1958.

⁸ Clunie and Robertson, J., 1961, 4382.
 ⁹ Bryan and Dunitz, Helv. Chim. Acta, 1960, 43, 3.

¹⁰ Huber-Buser and Dunitz, Helv. Chim. Acta, 1960, 43, 760.

¹¹ Schomaker, Waser, Marsh and Bergman, Acta Cryst., 1959, 12, 600.

TABLE 4.

Displacements (Å) of the atoms of the cyclopentenone system from the mean plane through C(1), C(3), C(4), C(5), C(6), and C(14).

C(1) C(2)	0.076 - 0.321	C(3) C(4)	-0.066 - 0.014	C(5) C(6)	-0.010 - 0.048	C(14) O(1)	0·061 0·040
•••		• • •		· · · /		- \-/	

EXPERIMENTAL

Crystal Data.—Bromogeigerin acetate, $C_{17}H_{21}BrO_5$; $M = 385\cdot3$; m. p. 147—153° (decomp.). Orthorhombic, $a = 8\cdot11$, $b = 13\cdot77$, $c = 15\cdot24$ Å, U = 1702 Å³, $D_m = 1\cdot512$ (by flotation), Z = 4, $D_c = 1\cdot505$, F(000) = 792, space group $P2_12_12_1-D_2^4$. Absorption coefficient for X-rays ($\lambda = 1\cdot542$ Å) $\mu = 36\cdot5$ cm.⁻¹.

Experimental Measurements.—Rotation, oscillation, Weissenberg, and precession photographs were taken with copper K_{α} ($\lambda = 1.542$ Å) and molybdenum K_{α} ($\lambda = 0.7107$ Å) radiation. Cell dimensions were obtained from rotation and precession photographs. The space group was determined uniquely from the systematic halvings in the reflexions. For the intensity measurements small crystals were employed, completely bathed in a uniform X-ray beam. No corrections for absorption were applied. The multiple-film technique ¹² with visual intensity estimation was applied to equatorial and equi-inclination upper-layer Weissenberg photographs taken from crystals rotated about the *a*- and *c*-crystal axes. The intensities were corrected for Lorentz, polarization, and the rotation factors appropriate to upper layers,¹³ and values of $|F_0|$ were then evaluated by the mosaic-crystal formula. The various layers were put on the same relative scale by comparison of common reflexions on different photographs. The absolute scale was obtained at a later stage by correlation with the final calculated structure amplitudes, $|F_0|$. In all 1625 independent structure amplitudes were measured (Table 5). The crystal density was determined by flotation in zinc chloride solution.

Structure Analysis.—Because of the presence of the bromine atom there was no need to postulate trial structures with assumptions as to the stereochemistry of the molecule, the analysis proceeding directly on the basis of the usual phase-determining heavy-atom method.¹⁴ The position of the bromine atom was determined initially from two-dimensional Patterson syntheses along the *a*- and *c*-crystal axes (see Fig. 4) and was confirmed by a study of appropriate sections of the three-dimensional Patterson function.

The unit-cell dimensions indicated that there would be considerable overlap of atoms in projection along the crystallographic axes and in consequence no attempt was made to elucidate the crystal structure further by two-dimensional methods.

The first three-dimensional Fourier synthesis was evaluated with the measured values of the structure amplitudes and phase constants appropriate to the bromine atom alone. When the resulting electron-density distribution was drawn various significant peaks were apparent and could be attributed to carbon atoms (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (16), and (17), and oxygen atoms (1), (2), (4), and (5). Co-ordinates were assigned to these atoms and they were then included (all as carbon atoms) in the calculation of a second set of structure amplitudes and phase constants. An overall isotropic temperature factor B of 3.0 Å^2 was assumed. The value of R, the average discrepancy between the calculated and measured structure amplitudes, was 0.280.

The improved phase constants were employed in the computation of a second threedimensional Fourier synthesis in which it was possible to locate without ambiguity the remaining carbon and oxygen atoms other than C(14). When structure factors were recalculated with the inclusion of these additional atoms the value of R fell to 0.230. A third threedimensional electron-density distribution based on the revised phase constants was then calculated. All the atoms (other than hydrogen) were clearly revealed and it proved possible to distinguish between carbon and oxygen atoms on the basis of peak heights and interatomic distances. On calculating a further set of structure factors, with each atom assigned its correct

¹⁸ Robertson, J. Sci. Instr., 1943, 20, 175.

¹³ Tunell, Amer. Min., 1939, 24, 448.

¹⁴ Robertson and Woodward, J., 1937, 219; 1940, 36; Sim, "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 227.

The Structure of Geigerin.

TABLE 5.

Measured and calculated values of the structure factors.

k	k	$I F_o F_c \alpha^{\circ}$	h k	$ F_a F_c \alpha^\circ$	h k	$I F_{\sigma} F_{c} \alpha^{\circ}$	h k	1	$ F_o F_o $	α°	h i	ŧ /	F	$ F_c \alpha^{\circ}$	k	k	1	F.	$ F_c \propto^{\circ}$
0	0	2 51 60 180 4 41 41 0 6 18 21 180 8 22 28 180 10 60 61 0 12 54 58 180	07	16 5 8 0 17 8 1 150 1 23 22 90 2 19 16 90 3 11 7 270 4 8 42 270	0 15	9 20 22 0 10 22 6 100 1 4 4 0 90 2 4 3 270 3 11 13 90 4 9 8 270	15	15 19 0 1 2 3	5 2 3 4 34 29 74 73 42 40 62 59	254 111 270 292 106 193	1 12	11 12 13 14 15	7 15 2 4 11 7 18	6 35 10 223 6 73 6 351 10 181 22 90			123456	104 62 80 24 59 26	81 278 55 41 67 89 19 358 70 245 22 19
0	1	14 19 21 0 16 6 8 180 1 72 69 270 2 77 83 90 3 14 14 90 4 98 89 90 5 85 92 270		5 13 10 90 6 19 21 90 7 53 44 270 8 20 22 270 9 27 25 90 10 4 8 90 11 23 21 270	0 16	5 15 16 270 6 3 2 90 7 13 13 90 8 17 16 270 9 6 12 270 9 6 12 270 10 12 12 90 0 25 30 180		4567890	35 34 62 63 38 32 81 73 4 9 47 39 27 28	141 12 45 179 124 38 286		1254567	35 16 17 4 5 14	42 89 21 250 21 240 8 69 6 67 4 136			7 8 9 10 11 12 13	56 22 42 13 11 21 16	57 119 23 260 46 266 13 122 12 101 17 319 19 76
		6 41 44 270 7 32 29 90 8 8 13 90 9 42 44 270 10 7 6 270 11 23 15 90		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$1 \checkmark 3 5 180$ $2 19 21 0$ $3 \checkmark 3 3 180$ $4 16 17 180$ $5 9 8 0$ $6 \checkmark 3 1 180$ $6 \checkmark 3 1 180$		11 12 13 14 15 16	19 19 17 15 8 10 ∠ 5 2 19 22 9 8	142 68 133 48 26 54		8 9 10 11 12	< 5 14 7 22 7 11	2 264 13 280 7 77 22 107 8 258 13 263	ē	,	14 15 16 17 18 19	10 4 7 16 4 5 5	6 134 12 265 6 58 19 100 4 293 13 280
		13 4 4 90 14 19 18 90 15 10 13 270 16 10 14 270 17 8 10 90 18 14 16 90	0 8	0 14 13 180 1 96*100 0 2 14 17 0 3 41 39 180 4 23 22 180 5 5 3 180	0 17	$\begin{array}{c} 8 & 9 & 15 & 0 \\ 1 & 4 & 3 & 2 & 90 \\ 2 & 11 & 13 & 90 \\ 3 & 4 & 2 & 5 & 270 \\ 4 & 10 & 11 & 270 \\ 5 & 5 & 8 & 90 \\ \end{array}$	16	1012745	10 13 5 1 58 35 45 35 88 90 24 20 58 54	90 266 79 59 326 304	1 13	1012345	5 9 12 4 5 21 12	9 90 7 259 19 333 4 306 25 173 14 190	c	•	100450	76 14 48 28 65	64 154 16 58 47 348 54 215 28 116 64 103
0	2	19 9 10 270 0 116 118 0 1 47 57 190 2 103 120 180 3 38 27 180 4 49 0 5 31 26 180		19 15 180 7 24 33 0 8 6 5 180 9 39 44 180 10 21 15 180 11 33 31 0 12 7 6 180	10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6 7 9 10 11 12	9 5 49 42 19 15 41 42 4 5 6 28 28 11 8	181 327 281 88 311 279 49		6 7 8 10 11 12	34 10 25 8 15 8 6	35 15 10 8 24 208 10 80 13 10 8 240 6 233			8 9 10 11 12 13	42 24 25 29 29 25	48 259 24 284 23 356 28 151 26 173 29 8 26 348
		6 4 8 180 7 8 7 180 8 13 13 180 9 31 33 0 10 37 38 0 11 54 53 180 12 36 35 180	09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8 10 7 180 9 42 46 270 10 8 8 0 11 29 33 90 12 16 18 0 13 30 34 270 14 26 29 180	17	13 14 15 16 17 18	13 18 16 16 12 15 13 11 4 3 9 9 56 44	83 291 254 124 39 338 270	1 14	130127.45	8 28 12 9 12 11	6 310 29 90 14 191 11 277 13 164 13 70 15 341	5	5	14 15 16 17 18 0	€ 8 13 6 5 7 32	8 230 10 110 10 42 4 208 1 251 9 180 32 358
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3 20 18 270 4 30 33 90 5 55 57 90 6 49 47 270 7 32 24 270 8 16 12 90	1 1	15 18 20 90 16 5 6 180 17 4 4 270 18 5 8 180 19 3 4 90 0 78 71 90	~ .	123456	20 18 40 36 52 56 39 36 48 48	16 230 169 349 1 187		6 7 8 10 11	-25 9 15 4 15 4	10 178 6 152 15 264 4 335 15 108 7 162			2345678	63 58 57 11 68 22 6	59 99 43 137 53 259 14 213 64 86 19 95 53 287
C	3	1 36 36 270 2 31 38 90 3 120 114 90 4 45 38 270 5 121 131 270 6 65 63 90		10 17 9 270 11 13 16 270 12 13 2 90 13 6 5 270 14 10 1 270 15 18 15 90		2 30 32 102 3 72 86 324 4 88 93 178 5 99 107 191 6 30 27 346 7 72 79 23		8 9 10 11 12 13	47 40 29 30 19 17 10 6 13 11 12 12	29 232 121 76 181	1 15	1012345	8555 89 18	15 207 1 00 8 336 11 39 16 203 21 171 11 348			9 10 11 12 13 14	∠ 8 33 26 15 15 20	9 213 31 58 26 22 15 263 14 179 20 282
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 10	0 54 51 0 1 30 35 0 2 30 25 180 3 12 12 180 4 12 13 0 5 24 20 180 6 19 17 180		8 41 35 195 9 25 30 152 10 21 18 30 11 18 17 220 12 9 8 137 13 14 14 40 14 13 15 89	18	14 15 16 17 18 0 1	7 12 16 14 10 14 12 14 5 11 58 58 8 7	339 32 165 199 331 270 22	1 16	6 7 8 9 10 10	17 7 15 4 4 19	19 19 6 178 13 203 14 3 6 43 1 270 18 282	2	6	156170123	10 10 57 362 29	15 526 15 95 9 113 60 180 37 344 55 12 23 241
,	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	15 15 20 149 16 13 17 333 17 21 23 23 18 8 12 141 19 9 14 142 0 40 58 90 1 76 82 75		2345678	52 50 13 10 36 32 50 48 19 19 28 23 21 21	63 47 273 193 178 330		2545678	 ▲ 16 ▲ 16 ▲ 16 97 6 	2 122 15 92 3 349 15 279 10 136 10 221 6 309			4567690	36 255 16 30 27	33 243 45 54 24 225 15 296 32 359 10 196 26 186
		1 43 36 180 2 89 90 0 3 25 16 180 4 53 42 180 5 34 26 0 6 15 9 0 7 21 11 180	0 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 84 90 296 3 51 44 343 4 56 46 126 5 61 56 11 6 22 21 335 7 17 16 267 8 50 48 284		9 10 11 12 13 14	10 9 39 40 7 1 23 28 7 8 23 22	152 287 340 64 300 292	2 0	0123456	18 44 111 61 32 16	12 180 71 90 147 180 57 90 41 0 21 270			11 12 13 14 15 16 17	6 30 13 14 13 4 7	8 330 30 26 16 179 17 173 10 69 7 26 18 226
		8 24 29 0 9 30 26 0 10 14 17 180 11 38 33 180 12 4 4 7 0 13 18 18 0	1	1 1 1 1 2 70 6 49 56 270 7 1 1 3 90 8 27 22 90 9 11 10 270 10 14 12 270 14 12 270		9 6 4 328 10 57 60 86 11 33 33 135 12 32 36 280 13 22 20 315 14 29 29 98	19	15 16 17 0 1 2 3	17 15 4 3 14 14 22 16 32 31 21 23	119 197 90 80 179 34		7 8 9 10 11 12	13 25 29 17 8 49	14 270 37 180 24 270 18 0 9 270 62 180	2	7	18 0 1 2 7 4	-6 30 34 32 57	2 26 27 0 25 32 55 129 30 286 46 290
0	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	15 7 8 49 16 13 12 314 0 141 145 270 1 20 23 326 2 27 34 342 3 58 60 120 4 55 60 170		4 56 7 8 9 10	54 51 26 21 50 52 12 8 30 33 26 19 9 10	37 157 179 316 329 197 247	2 1	13 14 15 0 1 2 3	9 25 25 25 81 100 69	1 270 38 0 12 270 19 0 72 172 95 268 74 61			567890 101	41 26 24 30 25 22 27	45 75 22 72 24 251 32 248 22 145 28 52 23 352
		2 120 127 90 3 61 61 90 4 73 72 270 5 77 70 270 6 60 64 90 7 20 17 90 8 39 35 270		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 13 7 156 6 106 92 352 7 5 6 85 8 69 67 170 9 32 31 32 10 27 26 356 11 17 16 246	1 10	11 12 13 14 15 16	8 3 9 8 15 12 16 15 5 2 10 12	51 232 165 24 173 173 270		4567890 10	50 31 47 51 37 37 22	46 155 28 235 57 293 58 127 42 73 40 325 26 246	2	8	12 13 14 15 16 1 10	21 8 15 9 16 15 62	16 114 10 203 14 331 14 69 15 101 13 0 61 353
		9 43 45 270 10 39 41 90 11 18 18 270 12 4 7 90 13 18 15 90 14 18 21 270 15 9 12 270	0 13	9 4 8 0 10 22 19 0 11 16 16 180 12 15 13 180 13 5 3 0 1 11 12 90 2 7 4 90		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1234 567	50 52 27 22 44 42 15 15 19 18 16 12	84 87 310 291 160 274		11 12 13 14 15 16	19 13 19 13 13 11	24 166 15 277 22 44 11 151 15 193 15 260 12 76			2345678	18 59 25 29 16 6	19 314 50 167 25 68 22 356 8 255 7 325 27 52
0	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3 35 42 90 4 20 25 90 5 29 32 270 6 21 26 270 7 17 21 90 8 4 7 90 9 16 14 270	24	19 5 6 78 0 61 59 90 1 65 65 269 2 69 92 3 72 79 92 4 31 29 34		8 9 10 11 12 13	17 15 15 19 18 17 25 28 19 17 21 22	83 295 93 113 266	22	18012345	6 111 134 68 81	14 85 89 0 116 185 35 156 64 11 74 276 48 111			9 10 11 12 13 14	19 12 39 27 2 7	15 205 11 260 38 359 5 190 3 187 18 5
		$\begin{array}{c} 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 2 \\ 2$	0 14	9 10 14 270 11 14 11 90 12 8 7 270 0 6 8 0 1 19 26 180 2 15 13 0		6 46 34 150 7 16 15 223 8 51 55 248 9 29 34 64 10 36 35 23 11 24 27 252	1 11	14 4 15 0 1 2 3 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2)4 117 90 219 261 6 198	z	767 89 10	16 38 36 19 28 30	46 111 20 69 42 159 36 260 21 352 28 43 27 170	2	9	16170123	19 8 39 24 28 45	7 202 5 213 30 0 21 86 32 182 44 285
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7 7 0 4 14 12 180 5 7 7 180 6 9 2 0 7 6 9 180 8 3 11 0		12 33 31 281 13 10 11 62 14 15 18 36 15 13 16 257 16 7 10 223 17 7 4 115		5678910	45 41 11 12 41 42 15 11 12 10 23 21	178 219 342 190 150 62	23	12 13 14 15 16 0	22 26 12 57	22 195 33 18 18 7 16 173 12 98 35 180			456789	8 14 29 38 23 19	11 44 15 162 26 289 34 289 21 93 23 60

TABLE 5. (Continued).

h k	1 F.	$ F_c \alpha^\circ$	h	k	1	$ F_o $	$ F_c \alpha^{\bullet}$	k	k	1	$ F_{o} $	$ F_c $	α°	h	k	1	$ F_{o} $	F_{c}	α°	h	k	1 F.	$ F_c \alpha^{\circ}$	'n	k	1	$ F_o $	$F_c \mid \alpha^\circ$
• •	10 30 11 6	23 339 7 75			23	57 33	51 336 27 24			10 11	13	16	195			2	4	11 1	506 24			9 36 10 21	32 95 24 163			45	< 3 10	4 171 10 290
2 9	13 7 14 4 7	10 288 3 290			ş	56 48	51 208 46 10			13 13 14	11 12 12	12 13 14	233			4 5 6	13 4 3	14 5 2 7 2	11 81 13			11 4 4 12 15 13 12	4)21 18 8 12 213	4	16	01	< 25	5 180 8 128
2 10	15 15 0 39	16 89 39 0 35 335			8	48 47 27	55 322 43 221 20 185			15 16	9	10	38 188 217	4	0	0	76 20	76 22 2	70		-	14 8 15 7	11 192 9 62	e	•	23	10	13 33
	2 39	37 195 42 159			10 11	6 9	6 39 6 254	3	8	0 1	35 13	33 14	270 134			34	53	50 5	90	•	'	1 32 2 57	28 25 52 144	2	U	23	26 55	21 0 46 270
	4 12 5 14 6 38	17 328 16 269			12 13	27	31 291 16 86 15 138			23	67 24	63 23 37	100 8 284			567	35 11	32 2	70			3 25	26 207			4 5	82 24	68 180 23 270
	7 17 8 12	14 22 15 200			15 16	85	12 229 7 291			56	21	2i 13	187 74			89	9 35	8 1 36 2	80			6 14 7 32	15 119 30 332			7 8	8 15	6 270 18 180
	9 17 10 13 11 13	19 266 . 14 358 11 359	3	2	18	93	6 180 80 90			8	20 24	23 21	63 134			10	53 15 22	50 17 24 1	0 90 80			8 11 9 13 10 25	10 240 11 118 26 15			10	16 31 25	16 270 27 0 22 90
	12 24 13 17	24 164 18 178			1 2 3	24 108 72	17 55 90 285 63 223			10	15	15 : 8	277			13	< 4 13	13	90			11 10 12 16	10 330 21 200			12	55	9 180 7 270
2 11	15 7 0 6	11 301 3 180			45	72	62 121 23 3			13 14	< 4 16	16	359 266			16 17	3	8 1 13	80 90			14 15 15 < 3	16 315 5 90			15 16	10 11	11 90 15 0
	1 12 2 29 3 19	13 134 27 255 19 1			6 7 8	14 49 31	16 58 47 145 29 229	,	9	15 16 0	25 25	7 6 27	93 92	4	1	12	39 49 53	43 1 53 2 44 3	80	4	8	16 10 0 8 1 50	11 134 9 180 47 23	5	1	17	4 52 30	7 270 49 90 32 266
	4 35	35 92 9 267			9 10	39 15	39 322 19 75	ſ	-	1	17 21	17 16	63 243			34	54 34	45 38	12 87			2 23 3 27	18 261 27 184			23	33 41	31 254 32 110
	7 6 8 38	8 122 36 94			12 13	15 19	18 250 23 231			45	14 14	14 14	204			67	29 13	4) 2 31 2 14	75 87			4 24 5 10 6 28	27 260			5	28 38	26 177 32 318
	9 8 10 6	4 298 8 263			14 15 16	13	16 119 8 94 10 308			6 7	31 31	28 29 12	194 12			89	17 37	20 36	34			7 10 8 11	10 226			7	27 16	25 347
	12 < 7 13 15	2 179 11 329	_	-	17 18	84	11 189 5 186			9 10	9	8	249 174			11	17 15	21 1	54 28			10 15 11 18	14 221 17 12			10 11	19 20	21 85 20 253
2 12	14 7 15 7 0 26	8 148 12 148 29 0	3	3	1 2	24 62 34	22 90 53 268 31 75			11 12 13	18 13 8	18 12 12	57 226 288			13 14 15	22 14 13	26 3 14 1 17 2	22 41			12 4 13 16 14 6	4 45 13 204 7 65			12 13 14	14 8 7	17 245 12 51 11 104
	1 17 2 12	15 240 12 182			34	71 87	54 109 83 184			14 15	10	8	22	4	2	ić	7 69	12 2 57	95	4	9	0 27 1 18	31 0 15 200			15	11 9	12 236 10 290
	3 21 4 21 5 12	19 5 19 327 13 248			67	29 47 27	46 356 25 237	و	10	1 2	40 20	25	270 137 51			23	44 34	59 1 38 1 30 3	24 36			2 28 3 15 4 25	50 205 14 296 25 16	5	2	0	15 39	11 90 28 57
	6 25 7 20 8 20	20 41 16 100			8 9	49 17	45 185 20 96 5 131			34	15 22	23	292 235 70			4 5	55 41	50 2 43 2	45			5 29 6 11	50 104 11 259			23	37 25	29 346 22 194 23 164
	9 5 10 19	7 340 16 359			11 12	29 13	31 225 12 90			67	21 23	19 23	19 46			78	16 48	13 39 2	0 56			9 21 9 8	21 150 11 73			56	50	49 19 25 344
	11 5 12 18 13 22	6 157 16 192 17 43			13 14 15	23 12 8	25 86 13 200 8 271			8 9 10	21 8 16	19 10: 15	233 311			10 11	19 14 23	21 3 9 27 1	13 49 .85			10 11 11 4 12 21	12 345 9 213 25 176			7 8 9	42 16 14	36 192 17 205 14 321
2 13	14 7 0 15	12 355 19 180			16 17	11	16 8 7 147			11	< 13 < 14	14	99 61			12	< 4	231	63			13 10 14 11	8 297 13 7			10	20	25 57 24 119
	2 12	11 297 9 107	3	4	10	71	59 90 24 6	_		14 15	11	12	244 124			15	7	92 131	31 01	•		1 39	37 358 14 209			13 14	5	7 200 9 146
	4 12 5 20 6 < 8	13 119 21 260 4 268			234	44 64	50 205 38 132 59 103	3	11	1 2	9 13 22	14 25 :	90 196 289	4	3	17 0 1	55 25	42 1 20 1	80 74			3 25 4 < 4 5 21	28 75 4 38 21 294			15 16 17	10 6 5	6 340 11 188
	7 24	26 100 14 61			567	36	33 328 40 191 16 205			34	32 21	36	91 91			23	52 48	53 48 47 3	7 96			64 4 7 33	4 254	5	3	0	37 97	32 270 74 279
	10 4 6 11 4	7 208			8 9	25	19 351 35 63			76	20 11 27	28 28	42 358			50	29 22	37 2 22 1	98 70			9 16 10 12	13 230			Ĩ	19	19 109 21 189
2 14	12 11 0 11 1 20	9 346 8 180 24 196			10 11 12	33 11 13	34 96 12 266 13 314			8 9 10	8 21 15	10 19 16	261 193 60			7 8 9	39 11 16	36 12 3 10 2	85 150			11 16 12 13 13 4	13 66 12 218 6 161			5 6 7	22 46 17	17 302 39 5 17 255
	2 10	11 82 21 20			13	15	17 93 10 61			11	< 4 17	14	256			10 11	32	33 I 9	58 53	4	11	14 10	13 48			9	10	10 186
	5 4 8	20 225 2 335 10 39			16 17	4 4	3 214 7 173	3	12	14	11	13	67 90			13 14	15 9 18	15 5 11 1 26 1	.14 .89			2 10 3 19	5 21 17 357			11 12	37	39 276 6 68
	7 5	7 238	3	5	18 0	7 37	11 347 31 270 22 301			2	10 21	13 20 17	26 338 238			15 16 17	< ¹⁵ 2 2	16 2 5	88 5 59			5 < 4	26 86 3 228 32 204			13 14 15	¹⁹ ₃ ₁₀	22 91 2 286 13 289
	10 4 11 10	7 98 13 201			23	43	40 62			45	15	15	172	4	4	0	55	46 1 47 1	80 .87			7 10 8 7	10 146 9 91	5	4	16	11	8 4 9 270
2 12	1 14	17 356 9 86			4 576	63 22	61 349 23 304			78	16	15 13	132 193			234	20 37 52	25 31 2 44 2	92 · 92			10 7 11 17	8 310 19 180			23	28 23	23 252
	3 12 4 15 5 15	17 81 18 237 16 305			7 8 9	35 13 48	38 193 15 174 47 0			10 11	20 4 15	18 6 14	299 61 106			567	42 26 34	361 26 312	10 51	4	12	12 < 3 13 7 0 20	1 255 8 323 20 0			4 56	27 35 37	24 346 31 321 31 181
	6 4	10 101 12 93			10	25	26 271		•••	12	89	11	284			89	43	38 3 30	90 90			1 17	16 232			7	37	33 223
2 16	0 11 1 4 .6	13 180 6 226			13 14	6 15	7 91 15 238	,	1)	1 2	2	10	253			11 12	15 15 10	$\frac{11}{15}$ $\frac{1}{11}$	98 10			4 13 5 16	13 217 21 255			10 11	24 10	23 169 12 208
	2 12	18 348 4 303 8 184			15 16 17	8	12 339 7 87 13 190			34	18 14	21 19 15	81 181 193			13	10	13 16 2 10 1	36 20 23			6 5 7 13	8 96 17 97 16 250			12 13 14	53	7 298 7 179 3 298
	5 9	10 84 7 19	3	6	0	36 51	29 270 55 225			67	13	14	8 347		-	16 17	65	11 9 2	73			9 6 10 16	11 294 15 48	5	5	15	8 38	7 358
2 17	0 4 1. 7	3 180 11 337			34	26 30	22 122 28 359			.9 10	19 3 12	19	95 34	•	2	1 2	42 27	42 3 22 1	44 .32	4	13	11 5 12 8 0 18	12 177 20 180			23	37 38	36 84 38 155
	2 4 4	6 82 4 163 14 285			567	31 36 24	35 160 39 173 20 285	3	14	11	15	18 10	256 90 285			34	45 47 16	39 1 46 2 16 2	57 64			2 19	4 106 21 333 12 69			4 5 6	19 17 31	18 270 15 9 30 9
30	1 40	45 90 48 0			89	29 17	29 5 18 89			23	17 15	22 16	270 135			67	33 10	34 71	69 13			4 14 5 15	13 142 19 254			7	19 22	18 201
	3 37 4 43 5 19	270 39 180 18 90			11	32	29 299 9 138			456	< 4	11	337 75			9 10	20 22	22 2 21 1 26 1	80 13			7 14	9 278 16 122 3 30			10 11	20 9 11	12 259 11 244
	6 43	36 0 20 90			13 14 15	12 8	14 88 9 307 10 267			780	11	14 9	160 294 2			11 12 13	15 6 16	16 9 18 1	14 33 72	4	14	9 < 3	8 295 4 180 15 177			12 13 14	23 9 11	26 90 10 132 12 263
	9 40 10 27	36 270	-	_	16 17	8.5	8 155 7 67	3	15	10	17	20	109			14 15	7 14	10 2	43			2 8	9 30 8 353	-	4	15	63	7 317
	11 45 12 6 13 35	12 0 34 270	3	7	12	40 40	16 270 34 64 41 130			23	7	9 11	29 143	4	6	16 0 1	22 36	10 1 19 1 29	80 49			5 < 3	6 131 18 78	>	0	1 2	15 17	13 217
	14 4 4 15 11 16 10	1 0. 16 90 14 0			54	25 23	22 232 21 15 43 9			456	6 7 15	8 9 16	223			234	22 38 17	233 362 151	43 52 26			7 4 3	2 34 8 290 10 23			345	24 43 22	27 62 39 335 23 225
	17 < 3 18 < 8	5 270 11 180			67	21	23 187 41 181	+		7	8	86	121 121			56	41	36 10 1	75	4	15	0 10 1 10	15 180 11 313			67	53	51 163
, 1	1 72	54 257			9	6	12 273	و	10	1	` 11	15	272			8	23	47 2 26	48 48			2 12 3 9	12 149			9	11	13 99

[1962]

The Structure of Geigerin.

FIG. 4. Patterson projections along the *a*- and *c*-crystal axes. Contour scale arbitrary.

chemical type, the value of R was 0.206. A fourth F_o synthesis was then computed and the co-ordinates from this were corrected for termination-of-series errors by applying back-shift corrections based on a three-dimensional F_c synthesis. This was followed by two cycles of least-squares adjustment ¹⁵ of the positional and thermal parameters of the bromine, carbon, and oxygen atoms.

On the basis of the final phase constants (see Table 5) a fifth and final three-dimensional ¹⁵ Rollett, cf. ref. 14, p. 87.

TABLE 6.

Anisotropic temperature-factor parameters $(b_{ii} \times 10^5)$.

	b_{11}	b_{22}	b_{ss}	b_{12}	b28	b_{13}		b_{11}	b22	b ₈₃	b_{12}	b23	b13
C(1)	1854	509	505	219	165	638	C(12)	2280	461	437	-460	-79	-213
C(2)	1986	635	401	-461	162	1	C(13)	1417	702	582	42	311	17
C(3)	2206	352	459	274	424	-176	C(14)	1617	754	590	512	207	-131
C(4)	864	599	609	637	-55	-215	C(15)	1828	766	526	26	26	128
C(5)	1282	323	496	178	30	-358	C(16)	1643	43 0	590	-183	6	32
C(6)	1067	496	658	242	-191	9	C(17)	1733	494	766	-243	14	-242
C(7)	2029	557	391	178	212	-132	O(1)	1351	821	692	- 65	270	-477
C(8)	1318	437	600	346	- 186	3	O(2)	1215	603	532	278	307	- 74
C(9)	2177	582	476	310	183	-341	O(3)	2128	705	750	- 36	341	-417
C(10)	1566	461	449	274	223	227	O(4)	1954	443	596	-130	354	449
C(11)	1257	499	441	-20	52	-207	O(5)	2785	552	920	180	-272	490
• •							Br	1594	599	542	4	308	187

electron-density distribution was evaluated and is shown in Fig. 1 by means of superimposed contour sections drawn parallel to (001). All the atoms are very clearly resolved and the oxygen atoms are represented by distinctly higher peaks than the carbon atoms.

For the structure-factor calculations theoretical atomic scattering factors were used; those of Berghuis *et al.*¹⁶ for carbon and oxygen and the Thomas-Fermi values ¹⁷ for bromine were chosen. The final value for the discrepancy R is 0.154 over all the observed structure amplitudes. The atomic co-ordinates, molecular dimensions and some non-bonded distances are shown in Tables 1 and 2. The final anisotropic temperature-factor parameters given by the least-squares refinement are shown in Table 6; they are values of b_{ij} in the equation:

$$\exp(-B\sin^2\theta/\lambda^2) = 2^{-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{23}kl + b_{13}hl)}$$

The standard deviations of the final atomic co-ordinates were derived from the least-squares residuals by application of the equation:

$$\sigma^2(x_i) = \sum_j w_j (\Delta F_j)^2 / [(n-s) \sum_j w_j (\partial F_j / \partial x_i)^2].$$

The results are listed in Table 3.

We are grateful to Professor J. Monteath Robertson, F.R.S., for his encouragement and to Professor D. H. R. Barton, F.R.S., for suggesting the problem and for supplies of material. The extensive calculations were performed on the Glasgow University DEUCE computer, with programmes devised by Drs. J. S. Rollett and J. G. Sime. Two of us (J. A. H. and A. T. McP.) are indebted to the Department of Scientific and Industrial Research for financial support.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, GLASGOW, W.2, SCOTLAND.

[Received, September 22nd, 1961.]

¹⁶ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ¹⁷ "Internationale Tabellen zur Bestimmung von Kristallstrukturen," Borntraeger, Berlin, 1935, Vol. II, p. 572.